介绍介绍即将上市的安野光雅的作品《走进奇妙的数学世界》吧。
这套书在微博上转发率好高。。。
今天多发点图片,大家一起看看吧~
适合5岁以上孩子~~~
三本一套
要比其他精装书、平装书厚很多
内容比较多。
【内容提要】
找出同一页中,谁和大家“不是一伙的”,形状、颜色、生长环境、数目……都可以是分类的条件。以此让孩子们理解分类,也了解事物是可以从多种角度来看待的。拿放大镜看一副画,可以看到是由许多个点构成;电视的每一个图像,都是由红绿蓝三原色的小点构成;从“点”这个小单位来探讨事物的构成,也即从微观角度去看事物,从而学习分析性的思考方式。
什么是序数和基数?离散量和连续量有什么区别?三角形具有怎样的性质?迷宫、左和右、自然数、一一对应等都是怎么回事?……在这三本以数学为主题的绘本中,作者从生活中司空见惯的现象、事物入手,用生动优美的图画,风趣幽默地呈现数学原理和概念的由来,通过有趣的游戏、手工和故事,突破数学枯燥的刻板印象,让数学变得简单、好玩,引导孩子自己动手、思考、发现,启发孩子对数学的兴趣。
游戏背后蕴藏数学概念,13种基本数学思想,层层深入,而在深入分析数学概念之外,作者更注重探究所有学科普遍适用的思考方法,让孩子从认识数学之初就能接触到这门学科的本质,培养他们从不同角度看事物及解决问题的能力。
严谨的逻辑与开放的想象并存,科学的理性与艺术的感性相融,安徒生奖画家奖得主安野光雅用优美的图画、趣味的创意构筑出一个兼具知性与诗意的、美丽奇妙的数学世界,展现出敏锐的想象力和缜密的逻辑推理能力,带我们进入一个可以自由联想的数学世界。
图片是安野光雅的风格,画面比较温和干净。
还有一些常用的数学测量工具的介绍。
每一本书后面都有安野光雅的后记。
摊开看看
【目录】
《走进奇妙的数学世界1》
不是一伙的
魔力药水
顺序
比高矮
后记(安野光雅)
《走进奇妙的数学世界2》
不可思议的魔法机器
比一比、想一想
点、点、点……
数字圈圈
数一数水
后记(安野光雅)
《走进奇妙的数学世界3》
魔药
漂亮的三角形
迷宫
左和右
后记(安野光雅)
《走进奇妙的数学世界2》
第一章:不可思议的魔法机器(背后的数学思想:何为“关系”,函数的映射关系)
两个小矮人发明了一台魔法机器,从左边的入口放进东西去,就会从右边的出口出来一个不一样的东西,在这个过程中,物体发生了转换和变化,入和出之间存在着一定的“关系”。作者通过小游戏将“关系”这种不可视、抽象的概念生动地介绍给孩子们,让他认识“关系”,思考各种人、事、物之间,究竟会发生什么样相互的关系。这种逻辑式的思考,是基本且必要的。
第二章:比一比、想一想(背后的数学思想:数学式的观察与比较)
两个洋娃娃、两只狗、两幅图、两个迷宫……左右两页的图看起来一样,但仔细看又不太一样,到底哪里一样,哪里又不一样,通过仔细地观察和比较,孩子们就能得出答案了。比较着思考是一种基本的思考方法,针对问题善用观察、分析、比较的能力,有助于做出全面正确的抉择。
第三章:点、点、点……(背后的数学思想:点、线、面的关系)
拿放大镜看一副画,可以看到是由许多个点构成;电视的每一个图像,是由红绿蓝三原色的小点构成;缝纫机车出的线,也是由一个个的点组成的。此处的“点”并非数学概念中的点,而是具有更广泛的含义,比如构成人体的细胞,宇宙的形成等等。从“点”这个小单位来探讨事物的构成,也即以微观的方式去看身边的事物,是不是会有很多新鲜的发现呢?
第四章:数字圈圈(背后的数学思想:数字是如何形成的,进位的概念)
画小朋友,可以一步步简化成圈圈,按照这样的方法,马、树、小鸟,很多东西都可以画成圈圈来代替,圈圈与数目相对应。每一个数目都有它的名字,如果都以圈圈来表示,数目多的时候容易混淆,所以就可以用数字来代表。而当数量比10个方格多时,把10个方格捆成一个长条(即以10为一个单位),作者由此巧妙地带出了进位的概念。
第五章:数一数水(背后的数学思想:连续量的测量,量杯)
很多东西都可以画成圈圈来数,可是多到像豆子那么多,该怎么数呢?水、砂糖此类东西要怎么数呢?如果了解了数量的两个类别——离散量和连续量,问题就会简单多了。离散量是可以个别分开,能一个一个数算的;连续量无法一个个数算,因此需要特定的单位来测量。如果想比较两个容器哪个能装的水更多,就用到量杯这种工具了。可以让孩子试着去量一量水、身高、体重……透过这样的具体经验,增进对“量”的认知能力。
《走进奇妙的数学世界3》
第一章:魔药(背后的数学思想:变化与位相,拓扑学)
两个小矮人调制了两种魔药,一种可以让物体横向伸缩,一种可以让物体纵向伸缩,涂抹不同的魔药,物体就有被压缩或拉伸的感觉。站在高楼上俯身往下看,拿着书横着看过去,物体的长度并未改变,视觉感受却不一样。不过,不管图形怎么变化,两只眼睛不会变成三只,嘴巴也不会跑到鼻眼睛上面去——这便是变化中的“不变”。本章通过有趣的游戏,让孩子们从生活中发现拓扑学。
第二章:漂亮的三角形(背后的数学思想:三角形基本概念与应用,初等几何学)
与花草树木所属的“自然”不同,三角形是另一种“自然”,虽默默无闻,但它的美丽更让人觉得不可思议。三角形在生活中随处可见,所有平面上的三角形具有共同的几何学上的性质,本章即引导孩子去接近和认识三角形,欣赏三角形的变化和趣味。通过折纸和剪纸游戏,安野光雅带领孩子们了解三角形,再从平面到立体,创造出各种有趣的造型,体验玩三角形的乐趣。
第三章:迷宫(背后的数学思想:拓扑学应用,一笔画)
迷宫是一种必须运用逻辑思考,需全面观察判断的益智游戏。在本章中,作者以树枝旁生、分叉的方式来说明,读者可以利用这种方式,自己设计迷宫和孩子一起玩。从迷宫延伸开来,通过七孔桥问题,作者引入了对于“一笔画”的介绍,生活中有各种各样的一笔画,哪些画是可以一笔画成的?
第四章:左和右(背后的数学思想:左和右的位置关系,方位,如何描述路线)
用文字表述左和右并不容易,在本章中,作者用活泼的图画和生动的描述,让孩子从认识自己身体的左右开始,循序渐进认识生活中常见的事物和居住环境的左和右。从同侧看,从对面看,从镜子里看……作者也不忘记通过各种变换形式让孩子们理解左和右的相对性。
理解了左和右,作者进而引入方位的概念,如何依照地图找到想要去的地方。孩子们可以用语言描述如何去往目的地,逐渐增进方位感和空间位置的概念。
欢迎光临 亲子阅读,公益组织-三叶草故事家族 (https://www.3yecao.org/) | Powered by Discuz! X3.2 |